146k views
5 votes
If sin⁡ θ=−4/5, and 270° < θ < 360°what is cos θ?

2 Answers

6 votes

Answer:

cosΘ =
(3)/(5)

Explanation:

Using the trigonometric identity

sin² x + cos²x = 1

⇒ cosx = ±
√(1-sin^2x)

Since 270 < Θ < 360 then cosΘ > 0

cosΘ =
√(1-(4/5)^2)

=
\sqrt{1-(16)/(25) }

=
\sqrt{(9)/(25) } =
(3)/(5)

User Uvar
by
8.7k points
4 votes
Here is your answer


[I am using ☆ instead of theta]


sin☆= -4/5


{sin}^(2)☆= {(-4/5)}^(2)= 16/25

Now,


cos☆= \sqrt{1-{sin}^(2)☆}


cos☆= √(1- (16/25))


cos☆= √((25-16)/25)


cos☆= √(9/25)


cos☆= 3/5

HOPE IT IS USEFUL
User Nluigi
by
8.6k points