158k views
5 votes

\tan^(4) x - 4 \tan^(2) + 3 = 0


1 Answer

3 votes

Answer:


\large\boxed{x=-(\pi)/(3)+k\pi\ \vee\ x=(\pi)/(3)+k\pi}\\\vee\\\boxed{x=-(\pi)/(4)+k\pi\ \vee\ x=(\pi)/(4)+k\pi}\\ k\in\mathbb{Z}

Explanation:


\tan^4x-4\tan^2x+3=0\\\\Domain:\ x\\eq(\pi)/(2)+k\pi,\ k\in\mathbb{Z}\\\\\text{Substitution}\ \tan^2x=t\geq0\\\\\text{Therefore we have the equation:}\\\\t^2-4t+3=0\\\\t^2-3t-t+3=0\\\\t(t-3)-1(t-3)=0\\\\(t-3)(t-1)=0\iff t-3=0\ \vee\ t-1=0\\\\t-3=0\qquad\text{add 3 to both sides}\\\boxed{t=3}\\\\t-1=0\qquad\text{add 1 to both sides}\\\boxed{t=1}


\text{We're going back to substitution}\\\\t=3\to\tan^2x=3\to\tan x=\pm\sqrt3\\\\x=-(\pi)/(3)+k\pi\ \vee\ x=(\pi)/(3)+k\pi,\ k\in\mathbb{Z}\\\\t=1\to\tan^2x=1\to\tan x=\pm1\\\\x=-(\pi)/(4)+k\pi\ \vee\ x=(\pi)/(4)+k\pi,\ k\in\mathbb{Z}

User Charlie Egan
by
9.0k points