23.8k views
2 votes
Demonstrate two different ways to solve the equation 5^(2x+1) = 25.

1 Answer

3 votes

Answer:

Explanation:

Method 1: Taking the log of both sides...

So take the log of both sides...

5^(2x + 1) = 25

log 5^(2x + 1) = log 25 <-- use property: log (a^x) = x log a...

(2x + 1)log 5 = log 25 <-- distribute log 5 inside the brackets...

(2x)log 5 + log 5 = log 25 <-- subtract log 5 both sides of the equation...

(2x)log 5 + log 5 - log 5 = log 25 - log 5

(2x)log 5 = log (25/5) <-- use property: log a - log b = log (a/b)

(2x)log 5 = log 5 <-- divide both sides by log 5

(2x)log 5 / log 5 = log 5 / log 5 <--- this equals 1..

2x = 1

x=1/2

Method 2

5^(2x+1)=5^2

2x+1=2

2x=1

x=1/2

User Tharik Kanaka
by
6.4k points