Answer:
1)Solving the expression
we get
![\mathbf{x=-(1)/(3)}](https://img.qammunity.org/2022/formulas/mathematics/college/41zirfph9wwf4f9rp3kfj51nopm6dj32mv.png)
2) solving the equation
we get
![\mathbf{x=2}](https://img.qammunity.org/2022/formulas/mathematics/college/upkkprzresunhylp0lyvxpr0tcjo5rj1vv.png)
Explanation:
We need to solve the expressions:
1)
![1-2(2x+1)=1-(x-1)\\](https://img.qammunity.org/2022/formulas/mathematics/college/yn0vfj7b7p7vmajq5el9o3hbpqqnsiioi9.png)
Solving
![1-2(2x+1)=1-(x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/clqaqy982h09tzimfl5x28r9ple4yx7ti0.png)
First solving the brackets
![1-4x-2=1-x+1](https://img.qammunity.org/2022/formulas/mathematics/college/irbumeno0bbtux9z6dhko7zh7vx1u19eok.png)
Simplifying
![-1-4x=-x](https://img.qammunity.org/2022/formulas/mathematics/college/1ivcrwipi3kaqj0alhcp5ihba03vqp5mmb.png)
Adding 4x on both sides
![-1-4x+4x=-x+4x\\-1=3x](https://img.qammunity.org/2022/formulas/mathematics/college/crrltt1iicyygls37fbcoffm6lceemg99n.png)
Switching the sides
![3x=-1](https://img.qammunity.org/2022/formulas/mathematics/college/vzkco97ch8uf6tr9d2d8ocq21zkovo1c2g.png)
Divide both sides by 3
![(3x)/(3)=-(1)/(3)\\x= -(1)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/52p7tc3vzkplzbtu8pom8zsq8l3jgeslxr.png)
So, Solving the expression
we get
![\mathbf{x=-(1)/(3)}](https://img.qammunity.org/2022/formulas/mathematics/college/41zirfph9wwf4f9rp3kfj51nopm6dj32mv.png)
2)
![3.6x-6.1=5.9-2.4x](https://img.qammunity.org/2022/formulas/mathematics/college/635qh6qvsno3hf1qcuv6tbxcw2ntqjmiu3.png)
Solving:
![3.6x-6.1=5.9-2.4x](https://img.qammunity.org/2022/formulas/mathematics/college/635qh6qvsno3hf1qcuv6tbxcw2ntqjmiu3.png)
Adding 6.1 on both sides
![3.6x-6.1+6.1=5.9-2.4x+6.1\\3.6x=12-2.4x](https://img.qammunity.org/2022/formulas/mathematics/college/u9ezrgrhlc6ryhsa3ah29ywy96p6yq9lii.png)
Adding 2.4x on both sides
![3.6x+2.4x=12-2.4x+2.4x\\6x=12\\](https://img.qammunity.org/2022/formulas/mathematics/college/hv7kovymjiwk0rzcj0t04zty4wxhujcsps.png)
Divide both sides by 6
![(6x)/(6)=(12)/(6)\\x=2](https://img.qammunity.org/2022/formulas/mathematics/college/89llnjt4e8pn2myir7q8l4y435bdhl4kic.png)
So, solving the equation
we get
![\mathbf{x=2}](https://img.qammunity.org/2022/formulas/mathematics/college/upkkprzresunhylp0lyvxpr0tcjo5rj1vv.png)