The coefficient matrix is
![\begin{bmatrix}-1&-1&2\\3&2&-1\\4&4&-8\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2ca57dmsowexay67huqokv2etfrkl73nup.png)
Notice that the last row is -4 times the first row, so that the rows of the matrix are not independent. This means the determinant would be 0.
Just to confirm, we can compute the determinant via a Laplace expansion along the first row:
![\begin{vmatrix}-1&-1&2\\3&2&-1\\4&4&-8\end{vmatrix}=-\begin{vmatrix}2&-1\\4&-8\end{vmatrix}+\begin{vmatrix}3&-1\\4&-8\end{vmatrix}+2\begin{vmatrix}3&2\\4&4\end{vmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3kxtkuc1fqpbomhazqxj72cp38pely7a4f.png)
![=-(-16+4)+(-24+4)+2(12-8)=12-20+8=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4veqkgrq6vwodssf7712hxmadmree7ul15.png)