Answer:
The answer to your question is given below
Step-by-step explanation:
To solve this problem, we'll assume that the plane is initially at rest.
Hence, the kinetic energy of the plane at rest is zero i.e Initial kinetic energy (KE₁) = 0
Next, we shall determine the final kinetic energy of the plan when the force was applied. This can be obtained as follow:
Force (F) = 5000 N
Distance (s) = 500 m
Energy (E) =?
E = F × s
E = 5000 × 500
E = 2500000 J
Since energy an kinetic energy has the same unit of measurement, thus, the final kinetic energy (KE₂) of the plane is 2500000 J
Finally, we shall determine the change in the kinetic energy of the plane. This can be obtained as follow:
Initial kinetic energy (KE₁) = 0
Final kinetic energy (KE₂) = 2500000 J
Change in kinetic energy (ΔKE) =?
ΔKE = KE₂ – KE₁
ΔKE = 2500000 – 0
ΔKE = 2500000 J
Hence, the change in the kinetic energy of the plane is 2500000 J.