15.5k views
2 votes

( \sin(x) + \tan(x) )/(1 + \sec(x) ) = \sin(x)

how do I verify this problem?​

User Igorek
by
7.9k points

1 Answer

0 votes

Answer:

see explanation

Explanation:

Consider the left side

Simplify the numerator/denominator using the trigonometric identities

• tanx =
(sinx)/(cosx) and secx =
(1)/(cosx)

sinx + tanx = sinx +
(sinx)/(cosx) =
(xsinxcosx+sinx)/(cosx)

=
(sinx(1+cosx))/(cosx) ← numerator

and

1 + secx = 1 +
(1)/(cosx) =
(cosx+1)/(cosx) ← denominator

Putting this together gives


(sinx(1+cosx))/(cosx) ×
(cosx)/(1+cosx)

Cancel cosx and (1 + cosx) on numerator/ denominator, leaving

left side = sinx = right side ⇒ verified

User Stanislav Prusac
by
7.8k points