235k views
5 votes
Match the cofactors to their corresponding entries in the matrix.

Match the cofactors to their corresponding entries in the matrix.-example-1
User Momoja
by
6.4k points

1 Answer

6 votes

Answer:

The co-factors and their values are shown in the table below.

Explanation:

We are given the matrix,
\begin{bmatrix}3&7&1\\7&1&-3\\8&5&1\end{bmatrix}.

It is required to match the co-factors with the corresponding values.

As, the co-factors are given by,


A_{c_(ij)} =
(-1)^(i+j)(d), where the d= determinant of the matrix after removing the i- row and j- column.

So, we have,

1.
A_{c_(11)}.

So,
A_{c_(11)}=(-1)^(1+1)(1* 1-5* (-3))

i.e.
A_{c_(11)}=(-1)^(2)(1+15)=16

2.
A_{c_(13)}.

So,
A_{c_(13)}=(-1)^(1+3)(7* 5-1* 8)

i.e.
A_{c_(13)}=(-1)^(4)(35-8)=27

3.
A_{c_(21)}.

So,
A_{c_(21)}=(-1)^(2+1)(7* 1-5* 1)

i.e.
A_{c_(21)}=(-1)^(3)(7-5)=-2

4.
A_{c_(22)}.

So,
A_{c_(22)}=(-1)^(2+2)(3* 1-8* 1)

i.e.
A_{c_(22)}=(-1)^(4)(3-8)=-5

5.
A_{c_(31)}.

So,
A_{c_(31)}=(-1)^(3+1)(7* (-3)-1* 1)

i.e.
A_{c_(31)}=(-1)^(4)(-21-1)=-22

Thus, we get,

Co-factor Value


A_{c_(11)} 16


A_{c_(13)} 27


A_{c_(21)} -2


A_{c_(22)} -5


A_{c_(31)} -22

User Voidsay
by
5.6k points