88.0k views
5 votes
I need help. Please show work.

I need help. Please show work.-example-1
User Carusd Ray
by
8.1k points

2 Answers

4 votes

Answer:

2

Explanation:


a_1=\sqrt2=2^(1)/(2)\\\\a_2=√(2\sqrt2)}=\bigg(2\cdot2^(1)/(2)\bigg)^(1)/(2)=\bigg(2^(3)/(2)\bigg)^(1)/(2)=2^{(3)/(2)\cdot(1)/(2)}=2^(3)/(4)\\\\a_3=\sqrt{2\sqrt{2√(2)}}=\Bigg(2\bigg(2\cdot2^(1)/(2)\bigg)^(1)/(2)\Bigg)^(1)/(2)=\Bigg(2\bigg(2^(3)/(2)\bigg)^(1)/(2)\Bigg)^(1)/(2)=\bigg(2\cdot2^(3)/(4)\bigg)^(1)/(2)=\bigg(2^(7)/(4)\bigg)^(1)/(2)\\\\=2^{(7)/(4)\cdot(1)/(2)}=2^(7)/(8)\\\vdots\\\\a_n=2^{(2^n-1)/(2^n)}


\lim\limits_(n\to\infty)a_n=\lim\limits_(n\to\infty)2^{(2^n-1)/(2^n)}=2^{\lim\limits_(n\to\infty)(2^n-1)/(2^n)}\qquad(*)}\\\\\lim\limits_(n\to\infty)(2^n-1)/(2^n)=\lim\limits_(n\to\infty)\bigg((2^n)/(2^n)-(1)/(2^n)\bigg)=\lim\limits_(n\to\infty)\bigg(1-(1)/(2^n)\bigg)\\\\=\lim\limits_(n\to\infty)1-\lim\limits_(n\to\infty)(1)/(2^n)=1-0=1\\\\(*)\qquad\lim\limits_(n\to\infty)2^{(2^n-1)/(2^n)}=2^1=2

User Romuloux
by
7.7k points
5 votes

let x is the limit, observe

x² = 2x

so x=2

User David Baron
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories