Answer: 19.65 hours
Explanation:
Mike:
![(1)/(x-1)\ \text{hours}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/biqct4anj8pggrjbvf8biq4hrptvqjzm6e.png)
Homer:
![(1)/(x)\ \text{hours}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6f5dt7tza3v5c8j4tdy32olfie9ftttgo6.png)
The each work 7 hours plus Mike works 5 hours alone:
![7\bigg((1)/(x-1)\bigg)+7\bigg((1)/(x)\bigg)+5\bigg((1)/(x-1)\bigg)=1\ job\\\\\\12\bigg((1)/(x-1)\bigg)+7\bigg((1)/(x)\bigg)=1\ job\\\\\\\bigg((12)/(x-1)\bigg)+\bigg((7)/(x)\bigg)=1\\\\\\(x)(x-1)\bigg((12)/(x-1)\bigg)+(x)(x-1)\bigg((7)/(x)\bigg)=1(x)(x-1)\\\\\\12(x) + 7(x-1)=x^2-x\\\\12x + 7x - 7 = x^2-x\\\\.\qquad \qquad \ \ 0=x^2-20x+7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2otuhvrzmp62exutnwu4tna9sqmtsnm6kj.png)
Use quadratic formula to solve for x:
![x=(-b\pm √(b^2-4ac))/(2a)\\\\.\quad=(-(-20)\pm √((-20)^2-4(1)(7)))/(2(1))\\\\.\quad=(20\pm √(400-28))/(2)\\\\.\quad=(20\pm √(372))/(2)\\\\.\quad=(20\pm 19.3)/(2)\\\\.\quad=10\pm9.65\\\\.\quad=19.65\quad or\quad 0.35](https://img.qammunity.org/2020/formulas/mathematics/middle-school/658y4psvwa7loeppbl6vwohg1bmqvtgx3t.png)
We know that 0.35 cannot be a valid answer since it took at least 12 hours to complete the job.
So, Homer can get 1 job done in 19.65 hours.