20.9k views
1 vote
Given: △ACM, m∠C=90°, CP ⊥ AM
AC:CM=3:4, MP-AP=1.

Find AM.

Given: △ACM, m∠C=90°, CP ⊥ AM AC:CM=3:4, MP-AP=1. Find AM.-example-1
User Juanhl
by
5.0k points

2 Answers

6 votes

Answer:

25/7

Explanation:

User Pid
by
4.9k points
3 votes

Answer:

Explanation:

Given: △ACM, m∠C=90°, CP ⊥ AM , AC:CM=3:4, MP-AP=1.

Solution: Let AC=3k and CM=4k, then from △ACM, we get


(AM)^(2)=(AC)^(2)+(CM)^(2)


(AM)^(2)=(3k)^(2)+(4k)^(2)


(AM)^(2)=25k^(2)


AM=5k

Now, AM=MP+AP⇒5k=MP+AP (1)

It is also given that MP-AP=1 (2)

Therefore, from (1) and (2),

(MP+AP)(MP-AP)=5k


(MP)^(2)-(AP)^(2)=5k

Add and subtract
(CP)^(2) on left side


(MP)^(2)+(CP)^(2)-(CP)^(2)-(AP)^(2)=5k


((MP)^(2)+(CP)^(2))-((CP)^(2)-(AP)^(2))=5k (3)

But, since CP ⊥ AM, Δ CMP and Δ CAP are right triangles. Therefore,


(MP)^(2)+(CP)^(2)=(CM)^(2)


(CP)^(2)+(AP)^(2)=(AC)^(2)

Thus, Equation (3) becomes,


(CM)^(2)-(AC)^2=5k


(4k)^(2)-(3k)^2=5k


7k^(2)=5k


k=(5)/(7)

Thus, AM=5k

AM=
(25)/(7)

User Soum
by
5.8k points