Answer:
![\boxed{\boxed{\sf \angle x=76^(\circ)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/689mrxdruzk10klhymuosh4r3pediuvvo7.png)
Explanation:
Given the diagram, we can see that ∠DIJ and ∠AIC are supplementary angles because they form a straight line.
∠DIJ and ∠JIC =180°
![\sf \angle DIJ+ 107=180](https://img.qammunity.org/2023/formulas/mathematics/high-school/xq0v64m335hmxcsm7e4baox8psz3i15jou.png)
Subtract 107 from both sides:
![\sf \angle DIJ+107-107=180-107](https://img.qammunity.org/2023/formulas/mathematics/high-school/ma2r6shc4p7plv8kcrrsvmu6uue3ucfiir.png)
![\sf \angle DIJ=73](https://img.qammunity.org/2023/formulas/mathematics/high-school/slpzrww3qg1v5uvqsz71riaj5sa192czs1.png)
*Interior angles of a triangle always add up to 180*
![\sf \angle JDI+\angle DIJ+\angle DJI=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6bb71m2lrf7pr8fos0v7t7lvxczjgt5yyf.png)
![\sf 31^(\circ)+73^(\circ)+\angle DJI=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2wuzu4kujc1ebq76yracw3bjmvy9mt5s04.png)
![\sf \angle DIJ=76^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6c4ycrbrelyoedd6xd0548zmscsk9spy5k.png)
∠DJI and ∠x are vertical angles, therefore they are congruent.
∠x=76°
________________________________