Answer: (D) bottom right graph
Explanation:
The vertex form of a quadratic equation is: f(x) = a(x - h)² + k, where
- (h, k) is the vertex
- |a| is the vertical stretch
- sign of "a" determines the direction of the parabola
Given g(x) = (x - 3)² - 5
- vertex (h, k) = (3, -5)
- vertical stretch |a| = 1
- sign of "a" is positive so parabola points up
The only graph that satisfies all of these conditions is the bottom right.