Answer:
1)
![2y^(2)+4y-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/psu52a4cxzt4yk34cyjx263sza96qety6j.png)
2)
![18x^(5)y^(4)z](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wasjzia8b7lv7t8miblkqrd4e46wdztx3d.png)
3)
![6x^(5)-12x^(4)+9x^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9nz7ppxyf6f3brz1unktigw9yxji3frth.png)
4) 40
5)
![x^(3)-7x^(2)+3x+36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gxab30o1z8yjoehesd2kfc2hrm1d7i1jh2.png)
Explanation:
1) Distribute the negative sign that is outside the parentheses and then you must add like terms, as following:
![(y^(2)-3y-5)-(-y^(2)-7y+4)=y^(2)-3y-5+y^(2)+7y-4=2y^(2)+4y-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/utzft6vdy7or3tsvc8yl11e99pejlrgirt.png)
2) According to the Product property of exponents, when you multiply powers with the same base, you must add the exponents. Then:
![(6xy^(3)z)(3x^(2)yx^(2))=18x^(5)y^(4)z](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hwpv670j34lr10n8y1vomd5b6foov2gt2f.png)
3) Apply the Distributive property and the Product property of exponents. Then, you obtain:
![-3x^(3)(-2x^(2)+4x-3)=6x^(5)-12x^(4)+9x^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zzfy6a56s4k0dcx9scb4rsgk2xwvw0k3rt.png)
4)
is a square of a sum, then, by definition you have:
![(a+b)^(2)=a^(2)+2ab+b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3o3c4ydkx0uzkzvhsug5buzv2ik46f2t2m.png)
Then:
![(4a+5)^(2)=(4a)^(2)+2(4a)(5)+5^(2)=16a^(2)+40a+25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bupuawlxx5btmbpmw53jv3nm6ug85eekvr.png)
The coefficient of the second term is the number in front of the variable a. Then, the answer is: 40
5) Apply the Distributive property and the Product property of exponents, then, oyou must add the like terms:
![(x-4)(x^(2)-3x-9)=x^(3)-3x^(2)-9x-4x^(2)+12x+36=x^(3)-7x^(2)+3x+36](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1vuvdhcao0m1bpgnul4ntpzggm7it8rpwl.png)