19.4k views
0 votes
Given cos theta=4/7 and csc theta<0, find sin theta and tan theta.

Given cos theta=4/7 and csc theta<0, find sin theta and tan theta.-example-1
User Tim Gage
by
5.9k points

2 Answers

4 votes

Answer:

C.

Explanation:

User Jim Jones
by
5.6k points
3 votes
ANSWER

The correct answer is C


\sin ( \theta) = - ( √(33) )/(7) , \tan ( \theta) = - ( √(33) )/( 4 )



EXPLANATION

It was given that,



\cos( \theta) = (4)/(7)


and


\csc( \theta) < 0

This means that,



\theta
is in the fourth quadrant.


We use the identity,


\cos ^(2) ( \theta) + \sin ^(2) ( \theta) = 1


This implies that,


( { (4)/(7) })^(2) + \sin ^(2) ( \theta) = 1



{ (16)/(49) } + \sin ^(2) ( \theta) = 1



\sin ^(2) ( \theta) = 1 - { (16)/(49) }




\sin ^(2) ( \theta) = { (33)/(49) }



\sin ( \theta) = \pm \sqrt{{ (33)/(49) }}



\sin ( \theta) = \pm ( √(33) )/(7)


But


\csc( \theta) < 0


This implies that,



\sin ( \theta) = - ( √(33) )/(7)


\tan ( \theta) = ( \sin( \theta) )/( \cos( \theta) )

\tan ( \theta) = ( - ( √(33) )/(7) )/( (4)/(7) )



\tan ( \theta) = - ( √(33) )/( 4 )
User Subhendu Mahanta
by
5.2k points