153k views
4 votes
Given cos theta=4/7 and csc theta<0, find sin theta and tan theta.

Given cos theta=4/7 and csc theta<0, find sin theta and tan theta.-example-1

1 Answer

5 votes

Answer:

C.
\sin\theta =-(√(33))/(7) and
\tan\theta=(-√(33))/(4)}

Explanation:

We have that,
\cos \theta =(4)/(7).

As, it is given that,
\sin^(2)\theta +\cos^(2)\theta=1

i.e.
\sin^(2)\theta =1-\cos^(2)\theta

i.e.
\sin^(2)\theta =1-((4)/(7))^(2)

i.e.
\sin^(2)\theta =1-(16)/(49)

i.e.
\sin^(2)\theta =(49-16)/(49)

i.e.
\sin^(2)\theta =(33)/(49)

i.e.
\sin\theta =\pm (√(33))/(7)

Thus, according to options,
\sin\theta =-(√(33))/(7)

Now, as we know that,


\tan\theta=(\sin\theta)/(\cos\theta)

i.e.
\tan\theta=(-(√(33))/(7))/((4)/(7))

i.e.
\tan\theta=(-√(33))/(4)}

Hence, option C is correct.

User Nolan Conaway
by
6.8k points