122k views
11 votes
Sin 3x + 2cos^2 (3x) = 1

User Jan Wrobel
by
3.9k points

1 Answer

5 votes

Recall the Pythagorean identity,


\sin^2(x) + \cos^2(x) = 1

Then we can rewrite the equation as


\sin(3x) + 2 \cos^2(3x) = 1


\sin(3x) + 2 (1 - \sin^2(3x)) = 1


1 + \sin(3x) - 2 \sin^2(3x) = 0

Factorize the left side.


(1 + 2 \sin(3x)) (1 - \sin(3x)) = 0

Then we have


1 + 2\sin(3x) = 0 \text{ or } 1 - \sin(3x) = 0


\sin(3x) = -\frac12 \text{ or } \sin(3x) = 1

Solve for
x. We get two families of solutions:


3x = \sin^(-1)\left(-\frac12\right) + 2n\pi \text{ or } 3x = \pi - \sin^(-1)\left(-\frac12\right) + 2n\pi


\implies 3x = -\frac\pi6 + 2n\pi \text{ or } 3x = \frac{7\pi}6 + 2n\pi


\implies \boxed{x = -\frac\pi{18} + \frac{2n\pi}3} \text{ or } \boxed{x = (7\pi)/(18) + \frac{2n\pi}3}

and


3x = \sin^(-1)(1) + 2n\pi


\implies 3x = \frac\pi2 + 2n\pi


\implies \boxed{x = \frac\pi6 + \frac{2n\pi}3}

(where
n is any integer)

User Ryan Gunn
by
3.5k points