Answer:

Explanation:
To write the quadratic in standard form, begin by writing it in vertex form

Where (h,k) is the vertex of the parabola.
Here the vertex is (-3,-2). Substitute and write:

To find a, substitute one point (x,y) from the parabola into the equation and solve for a. Plug in (0,7) a y-intercept of the parabola.

The vertex form of the equation is
.
To write in standard form, convert vertex form through the distributive property.
