Answer:
Option (1), (3) and (6) is correct.
m∠K = 84° , k ≈ 3.7 units and KL ≈ 3.2 units.
Explanation:
Given : ∠J = 58° , ∠L = 38° and length of side JK = 2.3 units.
We need to check all the options and choose that follows.
First we find the measure of ∠K
Using angle sum property , Sum of angles of a triangle is 180°
⇒ ∠J + ∠k + ∠L = 180°
⇒ 58° + ∠k + 38° = 180°
⇒ ∠k + 96° = 180°
⇒ ∠k = 180° - 96°
⇒ ∠k = 84°
Also using sine rule on ΔJKL , we get,
![(KL)/(\sin J)=(JL)/(\sin K)=(JK)/(\sin L)](https://img.qammunity.org/2020/formulas/mathematics/high-school/idjs1427flnrgnr0yzwn0pt95czmetl051.png)
Substitute the values, we get,
![(KL)/(\sin 58^(\circ))=(k)/(\sin 84^(\circ))=(2.3)/(\sin 38^(\circ))](https://img.qammunity.org/2020/formulas/mathematics/high-school/b1soariausdho3nkpwff68c7uyaw5rzgbo.png)
Consider the last two ratios, we have,
![(k)/(\sin 84^(\circ))=(2.3)/(\sin 38^(\circ))](https://img.qammunity.org/2020/formulas/mathematics/high-school/6iymwpbpi6l1zk75m6egqw8fgndulf58wn.png)
![{k}=(2.3)/(\sin 38^(\circ))* {\sin 84^(\circ)}](https://img.qammunity.org/2020/formulas/mathematics/high-school/gkfmi90nmoli185rk65ucyijk89s1ga7sn.png)
On solving we get,
![{k}=3.71](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc52yfody5nisy2qkwsi6fxa3m2v0yb84w.png)
Also, now consider the first and last ratio, we get,
![(KL)/(\sin 58^(\circ))=(2.3)/(\sin 38^(\circ))](https://img.qammunity.org/2020/formulas/mathematics/high-school/zw60r7d8614bqyin057klb12vbasvvlw9i.png)
![{KL}=(2.3)/(\sin 38^(\circ))* {\sin 58^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ddryytb31bwsrappelqavdyafcrg1o3n0d.png)
![{KL}=3.16](https://img.qammunity.org/2020/formulas/mathematics/high-school/hco2qo8ddfep9ctlfx03doc9r4u512k9ro.png)
Thus, k ≈ 3.7 units and KL ≈ 3.2 units.
Option (1), (3) and (6) is correct.