Answer:
Case(a):
![p[b]=(1)/(3)p[a]](https://img.qammunity.org/2020/formulas/mathematics/high-school/59xi840f1x01i63v0viaisau7mwjdwxs8f.png)
Case(b):
![p[b]=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/q4x9sx99v1lbdj7pbnucaycv2sbp0l3uqr.png)
Case(c):
![p[b]=(1)/(2)p[a\cap b]](https://img.qammunity.org/2020/formulas/mathematics/high-school/8onmcxeepdije4ole7fgmncvvbha8dop8t.png)
Explanation:
Given
(a) events a and b are a partition and p[a] = 3p[b].
(b) for events a and b, p[a ∪ b] = p[a] and p[a ∩ b] = 0.
(c) for events a and b, p[a ∪ b] = p[a]− p[b].
we have to find the p[b] in each case:
Case (a): events a and b are a partition and p[a] = 3p[b].
gives
![p[b]=(1)/(3)p[a]](https://img.qammunity.org/2020/formulas/mathematics/high-school/59xi840f1x01i63v0viaisau7mwjdwxs8f.png)
Case (b): for events a and b, p[a ∪ b] = p[a] and p[a ∩ b] = 0.
⇒
⇒
∵ p[a ∩ b] = 0.
Case(3): for events a and b, p[a ∪ b] = p[a]− p[b].
p[a ∪ b] = p[a]− p[b]
⇒
![p[a]+p[b]-p[a\cap b]=p[a]-p[b]](https://img.qammunity.org/2020/formulas/mathematics/high-school/urge9ftw26v93rlo248w4fhkl1zwqanvh8.png)
⇒
![2p[b]=p[a\cap b]](https://img.qammunity.org/2020/formulas/mathematics/high-school/6dzpkzormbkn6f8069tat9b83xywovebko.png)
⇒
![p[b]=(1)/(2)p[a\cap b]](https://img.qammunity.org/2020/formulas/mathematics/high-school/8onmcxeepdije4ole7fgmncvvbha8dop8t.png)