Answer:
Given the inequality:
Subtract 4 from both sides we have;
![8n< 24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/57gttj265abn2g0b1kcyrywhmdyix9xwb6.png)
Divide 8 to both sides we have;
![n < 3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmu9qek905kyiut3lhmckgp7t56mggejeo.png)
The solution set for this inequality is:
![(-\infty, 3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dduglqt84z09icnuyvl0d882l3ko47y6eg.png)
Let any 3 values from this solution sets:
n = 2
then;
![16+4<24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/25aisny080t2fl9it4evqzb7sk5fhgd2fa.png)
true
Similarly for:
n = 1
![8+4<24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67y0x99cdzn4dhi5uk39pdj0lps6wqhrlv.png)
true
For n =0
![0+4<24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fyu8otaza9ei64ssv0gd4jlx2k0aq33l95.png)
true
Therefore, the 3 values that would make this inequality true
is, {0, 1, 2}