Answer:
We know the parabolic function:
![y=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/681jf4lsjwxd9lmjd27bh82m6tps71a0gl.png)
We will use the points to form the equation (-2,9) we will get:
![9=a(-2)^2+b(-2)+c](https://img.qammunity.org/2020/formulas/sat/high-school/3pra0v9ayz52nk1037af9ksxxg3j0hvtaq.png)
![9=4a-2b+c](https://img.qammunity.org/2020/formulas/sat/high-school/ut991i1z8azjglfcb4x4e2f1g9ap93yzqp.png)
Now, using (-4,5) we will get:
![5=16a-4b+c](https://img.qammunity.org/2020/formulas/sat/high-school/i4yz2mpwhppnlx7f7361kqz31088rqu8kx.png)
Now, using (1,0) we will get:
![0=a+b+c](https://img.qammunity.org/2020/formulas/sat/high-school/po79af102vynrm5tu3u6j9ny5n0nyukcwk.png)
Now, using these three equations we will find a,b and c
On solving equations: a=-1,b=-4 and c=5
Now, using a,b and c in the general equation we get:
![y=(-1)x^2+(-4)x+5](https://img.qammunity.org/2020/formulas/sat/high-school/uyh5l408rn75fsfh8oqoh0tfxt2ib96sz2.png)
![\Rightarrow y=-x^2-4x+5](https://img.qammunity.org/2020/formulas/sat/high-school/j8ctr86jsphqsowqx01cm53udg8m5hrkhl.png)