Answer:
a.2
b.0.65
Explanation:
Given data
0.5,2.0,2.5,1.5,1.0,1.5
Highest value=2.5
Lowest value of data=0.5
Range=Highest value-Lowest value=2.5-0.5=2
Sum of given data=0.5+2+2.5+1.5+1+1.5=9
Total number of observations=n=6
Mean=
![\bar{x}=(sum\;of\;observation)/(number\;of\;observation)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y4c6wpqo8c0yd3x63ad2hf9q3d18p9yyd3.png)
Using the formula
![\bar{x}=(9)/(6)=1.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lj9ag06bw7fg4teykrn6pnfplmlinuq2xr.png)
x
![(x-\bar x)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jjbho3zzpxfihyf6isk7y9x594nkp5wqc5.png)
0.5 1
2.0 0.25
2.5 1
1.5 0
1.0 0.25
1.5 0
![\sum(x-\bar x)^2=1+0.25+1+0+0.25+0=2.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mpycf26gznv169g1k9j7cf9rcvb0w2ba8u.png)
Standard deviation=
![\sqrt{(\sum(x-\bar x)^2)/(n-1)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/20igh7xqkvrty030w6hgrj4kyf39b1dgvi.png)
S.D=
![\sqrt{(2.5)/(6)}=0.65](https://img.qammunity.org/2020/formulas/mathematics/middle-school/okzgddw8ylpkwdpb8iplbhgi9la2zlb5s5.png)