Answer:
- perimeter ΔABC=
![8√(5)+4√(2)units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iyg6jnb346n7nnj8xl1h9cif5o1bbhizpd.png)
- area ΔABC=64-(16+16+8)=24 square units.
Explanation:
- The perimeter of triangle is the length of all the sides of a triangle.
in order to calculate the lengths of side AB,AC and BC we need to use the pythagorean theorem for triangles ADB,AEC and BFC.
for ΔADB:
![(AB)^(2)=(AD)^(2)+(DB)^2\\\\(AB)^(2)=4^2+8^2=16+64=80\\\\AB=4√(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8zldsuboa50crnzxsxb51p0fxe6h67oszu.png)
similarly for ΔAEC
![(AC)^(2)=(AE)^(2)+(EC)^2\\\\(AC)^(2)=4^2+4^2=16+16=32\\\\AB=4√(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cnb5mtm7w4vp8vyhp5dmxvhnbptb5vvs49.png)
similarly for ΔBFC
![(BC)^(2)=(BF)^(2)+(FC)^2\\\\(BC)^(2)=8^2+4^2=16+64=80\\\\AB=4√(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/id74b6njo4tq4oln1wm1m1h32295g7ei85.png)
Hence, perimeter of ΔABC= AB+AC+BC=
![4√(5)+4√(2)+4√(5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ch1mcdrzjra9gpma10800myiuzsn8idujb.png)
=
![8√(5)+4√(2)units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/iyg6jnb346n7nnj8xl1h9cif5o1bbhizpd.png)
- Now area of ΔABC=area of square DBFE-( area ΔADB+ area ΔAEC+ area ΔBFC)
area of square DBFE= (side)^2
since the length of the side of square DBFE=8 units.
Hence, Area of square DBFE= (8)^2=64 square units.
Area of triangle is given as:
![(1)/(2)bh](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7xhhgqekxdiellx3sb16ps9hq1ectnxr0u.png)
where b denotes the base of the triangle and h denotes the height of triangle and for right angled triangle it is equal to the perpendicular side.
for ΔADB; h=4 units and b=8 units
Hence, area ΔADB=
![(1)/(2)* 4* 8=16 square units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q32mq6845pdglys0z0g2ofysb75t8n2il1.png)
for ΔAEC ; h=4 units ,b=4 units
Hence, area ΔAEC =
![(1)/(2)*4*4=8 squareunits](https://img.qammunity.org/2020/formulas/mathematics/middle-school/njxmukg01wp0s2c2rkmiosv7rozkkd24y6.png)
for ΔBFC ; h=8 units and b=4 units
Hence area of ΔBFC=
![(1)/(2)* 4* 8=16 square units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q32mq6845pdglys0z0g2ofysb75t8n2il1.png)
Hence area ΔABC=64-(16+16+8)=24 square units.