Answer:
Option 3
![f(x) = x^4 - 35x^2+180x -416](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9kdeqyqbvgc3ust5mlxw7bsgoqdevj032h.png)
Explanation:
To answer this question we start by writing the polynomial product form of factors:
![(x-4)(x + 8)(x- (2 + 3i))(x- (2-3i))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a69no7cuwpih5bxc5fpgzju9229qup28yz.png)
We multiply the first two factors:
![(x^2 + 8x -4x -32)(x- (2 + 3i))(x- (2-3i))\\\\(x^2 + 4x -32)(x- (2 + 3i))(x- (2-3i))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4v5ih9zmnhadgtf9pkm4umcukqd9k8yub0.png)
Now we multiply the second two factors:
![(x^2+ 4x -32) (x^2 -2x+ 3ix -2x -3ix + 4 - 9i^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qjuckiwxaywfz4ektkf0i2jo2a79kuujng.png)
We know that
![i = √((-1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qqrodhx78tny2h3d1d2l0bvyrenaok0fcq.png)
So:
![i^2 = -1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyw5ywlh3p3z7t4qvd00phufk2xpamcih7.png)
![(x^2 + 4x -32) (x^2 -4x + 4 + 9)\\\\(x^2 + 4x -32) (x^2 -4x + 13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dl29ndpm4nphwzc7dfosi84taectpbw5sg.png)
Finally we multiply both terms and obtain the polynomial sought:
![(x^4 -4x^3 + 13x^2 + 4x^3 -16x^2 +52x-32x^2+128x -416)\\\\x^4 - 35x^2+180x -416](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nl1kyd3b4ez2pnna8epoek40paiq85az9l.png)
Finally the correct option is the third.
![f(x) = x^4 - 35x^2+180x -416](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9kdeqyqbvgc3ust5mlxw7bsgoqdevj032h.png)