103k views
3 votes
Which of the following is equivalent to...

Which of the following is equivalent to...-example-1
User AsemRadhwi
by
5.0k points

1 Answer

4 votes

Answer:


\displaystyle \boxed{\sum_(n=1)^(19) (n^2 - 6n + 9) - \sum_(n=1)^(9) (n^2 - 6n + 9) = \sum_(n=10)^(19) (n-3)^2}.

Explanation:

We can start by noticing that


n^2 - 6n + 9 = n^2 - 2 * 3 * n + 3^2 = (n-3)^2,

so we get:


\displaystyle \sum_(n=1)^(19) (n^2 - 6n + 9) - \sum_(n=1)^(9) (n^2 - 6n + 9) = \sum_(n=1)^(19) (n-3)^2 - \sum_(n=1)^(9) (n-3)^2.

Let
a_n=(n-3)^2. We can now write the expression as:


\displaystyle\sum_(n=1)^(19) a_n - \sum_(n=1)^(9) a_n = (a_1 + a_2 + \dots + a_(19)) - (a_1 + a_2 + \dots + a_9).

Since the first 9 terms cancel, we get:


\displaystyle a_(10) + a_(11) + \dots + a_(19) = \sum_(n=10)^(19)a_n.

So we finally get:


\displaystyle \boxed{\sum_(n=1)^(19) (n^2 - 6n + 9) - \sum_(n=1)^(9) (n^2 - 6n + 9) = \sum_(n=10)^(19) (n-3)^2}.

User Davide Patti
by
4.3k points