73.6k views
1 vote
Use properties of limits and algebraic methods to find the limit, if it exists. (if the limit is infinite, enter '∞' or '-∞', as appropriate. if the limit does not otherwise exist, enter dne.) lim x→5 x2 − 25 x − 5

1 Answer

0 votes

Answer:


\displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5) = 10

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Factoring

Calculus

Limits

Limit Rule [Constant]:
\displaystyle \lim_(x \to c) b = b

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5)

Step 2: Find Limit

  1. [Limit] Factor:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5) = \lim_(x \to 5) ((x - 5)(x + 5))/(x - 5)
  2. [Limit] Simplify:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5) = \lim_(x \to 5) x + 5
  3. [Limit] Evaluate [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5) = 5 + 5
  4. Simplify:
    \displaystyle \lim_(x \to 5) (x^2 - 25)/(x - 5) = 10

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Quintonn
by
6.0k points