Answer:
4 seconds
Explanation:
To solve this problem you will use the quadratic formula:
.
Identify the a, b, and c values of the given quadratic equation:
Substitute these values into the quadratic formula.
![(-(32)\pm√((32)^2-4(-16)(128)) )/(2(-16)) \rightarrow (-32\pm√((1024)+(8192)) )/(-32) \rightarrow (-32\pm√(9216) )/(-32) \rightarrow (-32\pm96)/(-32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nclojkt45zuztlofs8t1p136s65g7g0r77.png)
Now split this into two equations.
![(-32+96)/(-32) ~and~(-32-96)/(-32)](https://img.qammunity.org/2020/formulas/mathematics/high-school/nz6w1r9xffwkzuy1386eruqlseltfdvo1i.png)
Positive case:
![(-32+96)/(-32) \rightarrow (64)/(-32) =-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/3okg9gi0bj1u82137j328klcj30kujfnm9.png)
Negative case:
![(-32-96)/(-32) \rightarrow (-128)/(-32) =4](https://img.qammunity.org/2020/formulas/mathematics/high-school/sglg6n3fc22vysd3o0rox1z3iyiq7z54cv.png)
Since time cannot be negative, the cannonball takes 4 seconds to hit its target on the ground.