Answer:
The lateral surface area is
![80,638.4 \ cm^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/d8t8g1m0e2v2tdvzrr770kaev6zfmn0tie.png)
Explanation:
Lateral Surface Area of a Cylinder
It can be computed with the formula:
![\displaystyle A=\pi r^2+2\pi rh](https://img.qammunity.org/2021/formulas/mathematics/high-school/bu6u34fb7iax4hkwlpcy8n9r3xa4mwbqm0.png)
Where:
r = radius of the circular base
h = height
The circumference of the base can be calculated as:
![C = 2\pi r](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pmqp0wjx9ci5d9giffw44n8s69k92ypksg.png)
We are given the circumference C=252 cm, let's find the radius solving for r:
![\displaystyle r=(C)/(2\pi)](https://img.qammunity.org/2021/formulas/mathematics/high-school/itr485lk3ow4su7evh1fgh0fo2ptj2xg4y.png)
![\displaystyle r=(252\ cm)/(2\pi)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m0yf7xyrjbh8en6nqtobakfwir7ovfdgkn.png)
r = 40.1 cm
Now we calculate the lateral surface area knowing h=3 m=300 cm:
![\displaystyle A=\pi 40.1^2+2\pi 40.1*300](https://img.qammunity.org/2021/formulas/mathematics/high-school/o8hb2liy9aocwznwg2wt5b78fx32cndso1.png)
![\boxed{A = 80,638.4 \ cm^2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/qni4ktjvfi8a1hxwc907b48ab3jm33ijcq.png)
The lateral surface area is
![80,638.4 \ cm^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/d8t8g1m0e2v2tdvzrr770kaev6zfmn0tie.png)