155k views
2 votes
Y equals the quotient of the quantity x squared plus 4 times x and the quantity x cubed minus 5.

1 Answer

2 votes

Given:

Consider the completer question is "Find the derivative
(dy)/(dx) for
y=(x^2-4x)/(x^3-5)."

To find:

The derivative
(dy)/(dx).

Solution:

Chain rule:
(d)/(dx)f(g(x))=f'(g(x))\cdot g'(x)

Quotient rule:
(d)/(dx)(f(x))/(g(x))=(g(x)f'(x)-f(x)g'(x))/([g(x)]^2)

We have,


y=(x^2-4x)/(x^3-5)

Differentiate with respect to x.


(dy)/(dx)=(d)/(dx)\left((x^2-4x)/(x^3-5)\right)

Using chain rule and quotient rule, we get


(dy)/(dx)=((x^3-5)(d)/(dx)(x^2-4x)-(x^2-4x)(d)/(dx)(x^3-5))/((x^3-5)^2)


(dy)/(dx)=((x^3-5)(2x-4)-(x^2-4x)(3x^2))/((x^3-5)^2)


(dy)/(dx)=(2x^4-4x^3-10x+20-3x^4+12x^3)/((x^3-5)^2)


(dy)/(dx)=(-x^4+8x^3-10x+20)/((x^3-5)^2)

Therefore, the required answer is
(dy)/(dx)=(-x^4+8x^3-10x+20)/((x^3-5)^2).

User Gaurav S
by
4.1k points