Answer:
The expected value of the sum of three numbers chosen out of 10 numbers will be 16.5.
Explanation:
Felicia has a stack of 10 cards with number 1,2,3,4,5,6,7,8,9,10
Selecting 3 cards out of 10
10C3 = 120
Now she picks three cards to look at their numbers and sum it up
The possible three numbers are
(1 2 3), (1 3 2), (2 1 3) ,(2 3 1), (3 1 2), (3 2 1) ,(1 2 4), (1 4 2), (2 1 4), (2 4 1),
(4 1 2)│(4 2 1), (1 2 5), (1 5 2)│(2 1 5), (2 5 1) ,(5 1 2), (5 2 1), (1 2 6), (1 6 2), (2 1 6), (2 6 1), (6 1 2) ,(6 2 1) ,(1 2 7), (1 7 2) ,(2 1 7), (2 7 1), (7 1 2), (7 2 1), (1 2 8), (1 8 2), (2 1 8) ,(2 8 1), (8 1 2) ,(8 2 1), (1 2 9), (1 9 2), (2 1 9), (2 9 1), (9 1 2), (9 2 1),
(1 2... …, (6 10 8), (8 6 10), (8 10 6), (10 6 8), (10 8 6), (6 9 10), (6 10 9), (9 6 10),
(9 10 6), (10 6 9), (10 9 6), (7 8 9), (7 9 8), (8 7 9), (8 9 7), (9 7 8), (9 8 7), (7 8 10),
(7 10 8), (8 7 10), (8 10 7), (10 7 8), (10 8 7), (7 9 10), (7 10 9), (9 7 10), (9 10 7),
(10 7 9), (10 9 7) , (8 9 10), (8 10 9), (9 8 10), (9 10 8), (10 8 9), (10 9 8)
Now we sum it all up so minimum sum can be 1+2+3 = 6 andthe maximum can be 8+9+10 = 27
Let S denote the sum of the three numbers that are chosen and P(S=k) denotes its probability
P(S=6)=1/120
P(S=7)=1/120
P(S=8)=1/60
P(S=9)=1/40
P(S=10)=1/30
P(S=11)=1/24
P(S=12)=7/120
P(S=13)=1/15
P(S=14)=3/40
P(S=15)=1/12
P(S=16)=1/12
P(S=17)=1/12
P(S=18)=1/12
P(S=19)=3/40
P(S=20)=1/15
P(S=21)=7/120
P(S=22)=1/24
P(S=23)=1/30
P(S=24)=1/40
P(S=25)=1/60
P(S=26)=1/120
P(S=27)=1/120
Now adding all the sum in order to get the expected value
∑(K=6 to 27) k*P(S=k) = 33/2 = 16.5
Therefore the expected value of the sum is 16.5.