Answer:
Step-by-step explanation:
An isosceles triangle is one with two equal lengths.
To find the lengths of the sides with coordinates
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
we use Pythagoras' theorem
d
=
√
(
x
2
−
x
2
)
2
+
(
y
2
−
y
1
)
2
from the information given
d
1
=
√
(
13
−
9
)
2
+
(
−
2
−
−
8
)
2
d
1
=
√
4
2
+
6
2
=
√
52
−
−
(
1
)
d
2
=
√
(
13
−
5
)
2
+
(
−
2
−
−
2
)
2
d
2
=
√
8
2
+
0
2
=
√
64
=
8
−
−
(
2
)
d
3
=
√
(
9
−
5
)
2
+
(
−
8
−
−
2
)
2
d
3
=
√
4
2
+
6
2
=
√
52
−
−
−
(
3
)
we see
d
1
=
d
3Explanation:
An isosceles triangle is one with two equal lengths.
To find the lengths of the sides with coordinates
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
we use Pythagoras' theorem
d
=
√
(
x
2
−
x
2
)
2
+
(
y
2
−
y
1
)
2
from the information given
d
1
=
√
(
13
−
9
)
2
+
(
−
2
−
−
8
)
2
d
1
=
√
4
2
+
6
2
=
√
52
−
−
(
1
)
d
2
=
√
(
13
−
5
)
2
+
(
−
2
−
−
2
)
2
d
2
=
√
8
2
+
0
2
=
√
64
=
8
−
−
(
2
)
d
3
=
√
(
9
−
5
)
2
+
(
−
8
−
−
2
)
2
d
3
=
√
4
2
+
6
2
=
√
52
−
−
−
(
3
)
we see
d
1
=
d
3Explanation:
An isosceles triangle is one with two equal lengths.
To find the lengths of the sides with coordinates
(
x
1
,
y
1
)
,
(
x
2
,
y
2
)
we use Pythagoras' theorem
d
=
√
(
x
2
−
x
2
)
2
+
(
y
2
−
y
1
)
2
from the information given
d
1
=
√
(
13
−
9
)
2
+
(
−
2
−
−
8
)
2
d
1
=
√
4
2
+
6
2
=
√
52
−
−
(
1
)
d
2
=
√
(
13
−
5
)
2
+
(
−
2
−
−
2
)
2
d
2
=
√
8
2
+
0
2
=
√
64
=
8
−
−
(
2
)
d
3
=
√
(
9
−
5
)
2
+
(
−
8
−
−
2
)
2
d
3
=
√
4
2
+
6
2
=
√
52
−
−
−
(
3
)
we see
d
1
=
d
3