242,508 views
19 votes
19 votes
Explain please thanks :)

Explain please thanks :)-example-1
User Rajesh Pitty
by
3.3k points

1 Answer

14 votes
14 votes

Answer:

24

Explanation:

The question is saying, how many three digit numbers can be made from the digits 3, 4, 6, and 7 but there can't be two of the same digit in them. For example 346 fits the requirements, but 776 doesn't, because it has two 7s.

Okay, on to the problem:

We can do one digit at a time.

First digit:

There are 4 digits that we can choose from. (3, 4, 6, and 7)

Second digit:

No matter which digit we chose for the first digit, there is only going to be 3 of them left, because we already chose one, and you can't repeat that same digit. So there are 3 options.

Third digit:

Using the same logic, there are only 2 options left.

We have 4 choices for the first digit, 3 choices for the second, and 2 for the third.

Hence, this is 4 * 3 * 2 = 24 three-digit numbers that can be made.

User Zaptree
by
3.3k points