51.6k views
4 votes
Integrate the following:

\displaystyle \int (x^2)/(x^2+x+3)\, dx

User Sein Kraft
by
4.6k points

2 Answers

0 votes

hope this will help you........

Integrate the following: \displaystyle \int (x^2)/(x^2+x+3)\, dx-example-1
User Twoflower
by
4.0k points
1 vote

Answer:


\int {(x^2)/(x^2+x+3) } \, dx = - (5√(11) )/(11)arctan((√(11)(2x+1) )/(11) ) - (1)/(2)ln|x^2+x+3| +x + C

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property

Algebra I

  • Completing the Square
  • Rearranging Variables

Algebra II

  • Long Division

Calculus

  • U-Substitution
  • [Integration Trick 1] Numerator Split
  • [Integration Trick 2] Completing the Square
  • Integration Rule 1:
    \int {cf(x)} \, dx = c\int {f(x)} \, dx
  • Integration Rule 2:
    \int {f(x)+g(x)} \, dx =\int {f(x)} \, dx + \int {g(x)} \, dx
  • Integration 1:
    \int {(1)/(u) } \, du =ln|u| + C
  • Integration 2:
    \int {(du)/(u^2+a^2) } = (1)/(a) arctan((u)/(a) )+C
  • Integration 3:
    \int {x^n} \, dx = (x^(n+1))/(n+1) +C

Explanation:

Step 1: Define


\int {(x^2)/(x^2+x+3) } \, dx

Step 2: Simplify Function

We do long division to simplify the function inside the function.

See Attachment for Long Division Work.

Once we do long division, our function becomes
1-(x+3)/(x^2+x+3)

Now we rewrite our Integral:
\int ({1-(x+3)/(x^2+x+3) }) \, dx

Step 3: Integrate Pt. 1

  1. Distributive Integral [Int Rule 1]:
    \int {1} \, dx - \int {(x+3)/(x^2+x+3) } \, dx
  2. Integrate 1st Integral [Int 3]:
    x - \int {(x+3)/(x^2+x+3) } \, dx

Step 4: Identify Variables Pt.1

Set variables for u-substitution.

u = x² + x + 3

du = (2x + 1)dx

Step 5: Integrate Pt. 2

  1. Rewrite Integral [Int Rule 1]:
    x - (1)/(2) \int {(2(x+3))/(x^2+x+3) } \, dx
  2. Distribute 2 [Alg]:
    x - (1)/(2) \int {(2x+6)/(x^2+x+3) } \, dx
  3. Rewrite Integral [Alg]:
    x - (1)/(2) \int {(2x+1+5)/(x^2+x+3) } \, dx
  4. Rewrite Integral [Int Trick 1]:
    x - (1)/(2) [\int {(2x+1)/(x^2+x+3) } \, dx + \int {(5)/(x^2+x+3) } \, dx ]
  5. (2nd Int) Complete the Square:
    x - (1)/(2) [\int {(2x+1)/(x^2+x+3) } \, dx + \int {(5)/((x+(1)/(2))^2 + (11)/(4) ) } \, dx ]

Step 6: Identify Variables Pt. 2

Set variables for u-substitution for 2nd integral.

z = x + 1/2

dz = dx

a = √(11/4)

Step 7: Integrate Pt. 3

  1. [Integrate] U-Substitution:
    x - (1)/(2) [\int {(1)/(u) } \, du + \int {\frac{5}{z^2 + (\sqrt{(11)/(4)})^2} } \, dz ]
  2. Rewrite Integral [Int Rule 1]:
    x - (1)/(2) [\int {(1)/(u) } \, du + 5\int {\frac{dz}{z^2 + (\sqrt{(11)/(4)})^2} } ]
  3. Integrate 1st Integral [Int 1]:
    x - (1)/(2) [ln|u| + 5\int {\frac{dz}{z^2 + (\sqrt{(11)/(4)})^2} } ]
  4. Integrate 2nd Integral [Int 2]:
    x - (1)/(2) [ln|u| + 5(\frac{1}{\sqrt{(11)/(4)}}arctan(\frac{z}{\sqrt{(11)/(4) } } ) ) ]
  5. Distribute 5 [Alg]:
    x - (1)/(2) [ln|u| + \frac{5}{\sqrt{(11)/(4)}}arctan(\frac{z}{\sqrt{(11)/(4) } } ) ]
  6. Distribute -1/2 [Alg]:
    x - (1)/(2)ln|u| - \frac{5}{2\sqrt{(11)/(4)}}arctan(\frac{z}{\sqrt{(11)/(4) } } )
  7. Rationalize [Alg]:
    x - (1)/(2)ln|u| - (5√(11) )/(11)arctan(\frac{z}{\sqrt{(11)/(4) } } )
  8. Resubstitute variables [Alg]:
    x - (1)/(2)ln|x^2+x+3| - (5√(11) )/(11)arctan(\frac{x+(1)/(2) }{\sqrt{(11)/(4) } } )
  9. Simplify/Rationalize [Alg]:
    x - (1)/(2)ln|x^2+x+3| - (5√(11) )/(11)arctan((√(11)(2x+1) )/(11) )
  10. Rewrite [Alg]:
    - (5√(11) )/(11)arctan((√(11)(2x+1) )/(11) ) - (1)/(2)ln|x^2+x+3| +x
  11. Integration Constant:
    - (5√(11) )/(11)arctan((√(11)(2x+1) )/(11) ) - (1)/(2)ln|x^2+x+3| +x + C

And we have our final answer! Hope this helped you on your Calculus Journey!

Integrate the following: \displaystyle \int (x^2)/(x^2+x+3)\, dx-example-1
User Natural Lam
by
4.7k points