Answer:
Explanation:
Given that:
The sample size = 150
The sample mean = 70.69
The standard deviation = 29.60
The sample mean is equal to the point estimate of the population = 70.69
At 99% confidence interval level is:
∝ = 1 - 0.99
∝ = 0.01
The critical value:
![Z_(\alpha/2) = Z_(0.01/2) \\ \\ Z_(0.005) = 2.58 \ using \ Z \ tables](https://img.qammunity.org/2021/formulas/mathematics/college/bushhjv9hoefat2574zpaaxe6gg6hib3cq.png)
The Margin of error =
![Z_(\alpha/2) * (\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/f7owgmc8bx5s5hyd5amnq6wdxnbxhyhcni.png)
![= 2.58 * (29.6)/(√(150))](https://img.qammunity.org/2021/formulas/mathematics/college/mzg3fjmwjb1vnemliczfa4g7q7anhd6tgv.png)
= 2.58 × 2.4168
≅ 6.235
At 99% confidence interval; the estimate of the population mean lies within the interval:
=
![\overline x - E < \mu \ < \overline x + E](https://img.qammunity.org/2021/formulas/mathematics/college/1bkqpz46ey3vb1uzwaweb513avm1iwe520.png)
= 70.69 - 6.235 < μ < 70.69 + 6.235
= 64.455 < μ < 76.925
= (64.455 , 76.925 )