39,721 views
26 votes
26 votes
Which expression is equivalent to 3√64ab²c³?

2abc²[√4a²b³c]
4a²b²c³ (3√5)
8a³b³c¹ (3√/bc)
8a²b²c³(3√/b)

User Olinsha
by
3.1k points

2 Answers

20 votes
20 votes
  • ³√64ab²c³
  • √4³ab²c³
  • 4c√a^{2/3}b^{2/3}

The expression is seemed to have none of the above solutions

19 votes
19 votes

Answer:


4a^2b^2c^3\left(\sqrt[3]{b}\right)

Explanation:

**Please note that the expression quoted in the question is likely incorrect (see attachment)**

Assuming the expression is:


\sqrt[3]{64a^6b^7c^9}


\textsf{Apply radical rule} \quad √(ab)=√(a){ \cdot √(b)


\implies \sqrt[3]{64} \cdot \sqrt[3]{a^6}\cdot \sqrt[3]{b^7}\cdot \sqrt[3]{c^9}

Rewrite 64 as 4³:


\implies \sqrt[3]{4^3} \cdot \sqrt[3]{a^6}\cdot \sqrt[3]{b^7}\cdot \sqrt[3]{c^9}


\textsf{Apply exponent rule} \quad a^(b+c)=a^b \cdot a^c \quad \sf to\:\:b^7


\implies b^7=b^(6+1)=b^6b^1=b^6b

Therefore:


\implies \sqrt[3]{4^3} \cdot \sqrt[3]{a^6}\cdot \sqrt[3]{b^(6)b}\cdot \sqrt[3]{c^9}


\implies \sqrt[3]{4^3} \cdot \sqrt[3]{a^6}\cdot \sqrt[3]{b^(6)}\cdot \sqrt[3]{b}\cdot \sqrt[3]{c^9}


\textsf{Apply exponent rule} \quad \sqrt[n]{a^m}=a^{(m)/(n)}


\implies 4^{(3)/(3)} \cdot a^{(6)/(3)} \cdot b^{(6)/(3)} \cdot \sqrt[3]{b} \cdot c^{(9)/(3)}

Simplify:


\implies 4^1 \cdot a^2 \cdot b^2 \cdot \sqrt[3]{b} \cdot c^3


\implies 4a^2b^2c^3\left(\sqrt[3]{b}\right)

Which expression is equivalent to 3√64ab²c³? 2abc²[√4a²b³c] 4a²b²c³ (3√5) 8a³b³c¹ (3√/bc-example-1
User Gfortune
by
2.9k points