(tan²(θ) cos²(θ) - 1) / (1 + cos(2θ))
Recall that
tan(θ) = sin(θ) / cos(θ)
so cos²(θ) cancels with the cos²(θ) in the tan²(θ) term:
(sin²(θ) - 1) / (1 + cos(2θ))
Recall the double angle identity for cosine,
cos(2θ) = 2 cos²(θ) - 1
so the 1 in the denominator also vanishes:
(sin²(θ) - 1) / (2 cos²(θ))
Recall the Pythagorean identity,
cos²(θ) + sin²(θ) = 1
which means
sin²(θ) - 1 = -cos²(θ):
-cos²(θ) / (2 cos²(θ))
Cancel the cos²(θ) terms to end up with
(tan²(θ) cos²(θ) - 1) / (1 + cos(2θ)) = -1/2