Answer:
(h + g)(8) = 67
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Algebra I
- Combining Like Terms
- Function Notation
Explanation:
Step 1: Define
h(t) = t² + 2t
g(t) = -t - 5
Step 2: Find (h + g)(x)
- Substitute: (h + g)(x) = t² + 2t - t - 5
- Combine like terms: (h + g)(x) = t² + t - 5
Step 3: Find (h + g)(8)
- Substitute in x: (h + g)(8) = 8² + 8 - 5
- Exponents: (h + g)(8) = 64 + 8 - 5
- Add: (h + g)(8) = 72 - 5
- Subtract: (h + g)(8) = 67