Answer:
Perpendicular slope = – 1/m = -1/3 = -1/3
Explanation:
Given the points
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nrlo6m8wdo12tyt9h1mdgp9vd4866t2plg.png)
![\left(x_1,\:y_1\right)=\left(-1,\:2\right),\:\left(x_2,\:y_2\right)=\left(-2,\:-1\right)](https://img.qammunity.org/2021/formulas/mathematics/college/aos76dni8hd6c0or6sja020zxbez2m2suh.png)
![m=(-1-2)/(-2-\left(-1\right))](https://img.qammunity.org/2021/formulas/mathematics/college/jrb3iaa0v6pcuqgppki3ig2fsli0bw4ren.png)
![m=(-1-2)/(-2-\left(-1\right))](https://img.qammunity.org/2021/formulas/mathematics/college/jrb3iaa0v6pcuqgppki3ig2fsli0bw4ren.png)
![m=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1gd7netuxdn1rni2nn5jlsja6h6py5j1k1.png)
We know that a line perpendicular to another line contains a slope that is the negative reciprocal of the slope of the other line, such as:
slope = m = 3
perpendicular slope = – 1/m = -1/3 = -1/3
Thus, the slope of any line perpendicular to GH = -1/3