Answer:
(48.65, 56.83)
Explanation:
Given that :
Sample size (n) = 40
Mean (m) = 52.74
Standard deviation (s) = 13.21
α = 95%
Confidence interval around sample mean can be obtained using the relation :
Mean ± Zstatistic * s/√n
Z score for 95% confidence interval = 1.96 (Z probability calculator)
s / √n = 13.21 / √40 = 2.0886843
Lower limit of confidence interval :
52.74 - (1.96 * 2.0886843) = 48.646178772 = 48.65
Upper limit of confidence interval :
52.74 + (1.96 * 2.0886843) = 56.833821228 = 56.83