20.7k views
19 votes
Anwer this question with full method please​

Anwer this question with full method please​-example-1

1 Answer

11 votes

Explanation:

Let simplify the identity


\frac{ \csc {}^(2) (x) - \sec {}^(2) (x) }{ \csc {}^(2) (x) + \sec {}^(2) (x) }


\frac{ \frac{1}{ \sin {}^(2) (x) } - \frac{1}{ \cos {}^(2) (x) } }{ \frac{1}{ \sin {}^(2) (x) } + \frac{1}{ \cos {}^(2) (x) } }

Combine Like Fractions


\frac{ \frac{ \cos {}^(2) (x) - \sin {}^(2) (x) }{ \sin {}^(2) (x) \cos {}^(2) (x) } }{ \frac{ \sin {}^(2) (x) + \cos {}^(2) (x) }{ \cos {}^(2) (x) \sin {}^(2) (x) } }

Multiply by reciprocals.


\frac{ \cos {}^(2) (x) - \sin {}^(2) (x) }{ \sin {}^(2) (x) \cos {}^(2) (x) } * \frac{ \cos {}^(2) (x) \sin {}^(2) (x) }{ \sin {}^(2) (x) + \cos {}^(2) (x) }

Pythagorean Identity


\frac{ \cos {}^(2) (x) - \sin {}^(2) (x) }{1}

Double Angle Identity


( \cos(2x) )/(1)


\cos(2x)

Now, we need to find cos 2x. Given that we have tan x.

Note that


\cos {}^(2) (x) - \sin {}^(2) (x) = \cos(2x)

So let find cos x and tan x.

We know that


\tan(x) = ( \sin(x) )/( \cos(x) )

We know that


\tan(x) = (o)/(a)


\sin(x) = (o)/(h)


\cos(x) = (a)/(h)

So naturally,


\tan(x) = ( (o)/(h) )/( (a)/(h) ) = (o)/(a)

So we need to find the hypotenuse,

remember Pythagorean theorem.


h {}^(2) = {o}^(2) + {a}^(2)

Here o is 1

h is root of 5.

So


{h}^(2) = {1}^(2) + ( √(5) ) {}^(2)


{h}^(2) = 1 + 5


{h}^(2) = 6


h = √(6)

Now, we know h, let plug in to find sin x and cos x.


\sin(x) = (1)/( √(6) )


\cos(x) = ( √(5) )/( √(6) )

Let's find these values squared


\sin {}^(2) (x) = (1)/(6)


\cos {}^(2) (x) = (5)/(6)

Finally, use the trig identity


(5)/(6) - (1)/(6) = (2)/(3)

So part I.= 2/3

ii. Use the definition of sine and cosine and Pythagorean theorem

Let sin x= o/h

Let cos x= a/h.

So

sin x squared is


\sin {}^(2) (x) = \frac{o {}^(2) }{h {}^(2) }


\cos {}^(2) (x) = \frac{ {a}^(2) }{h {}^(2) }

By definition,


\frac{ {o}^(2) }{ {h}^(2) } + \frac{ {a}^(2) }{h {}^(2) } = 1


\frac{ {o}^(2) + a {}^(2) }{h {}^(2) } = 1

Remember that


{ {o}^(2) + {a}^(2) } = {h}^(2)

So


\frac{ {h}^(2) }{h {}^(2) } = 1


1 = 1

User Calandoa
by
3.7k points