Given:
Point A (4, -3) is translated 3 units horizontally and -5 units vertically, rotated 90° clockwise, reflected over the x-axis, and dilated by a factor of 5.
To find:
The rule and coordinates of A'.
Solution:
Let a point be P(x,y).
If a point translated 3 units horizontally and -5 units vertically, then
![P(x,y)\to P_1(x+3,y-5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ughf8giobou57u5qgxozypjosar4jz970.png)
Then, rotated 90° clockwise.
![(x,y)\to (y,-x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fw1xshbv7s78egr5ys9sxpzlr6vhvh4jrm.png)
![P_1(x+3,y-5)\to P_2(y-5,-(x+3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/1xukx4qja14b00t6rhrwcgfte2k91oi7ag.png)
Then, reflected over the x-axis.
![(x,y)\to (x,-y)](https://img.qammunity.org/2021/formulas/mathematics/college/gv2cpdwi4p688i15t0z9jb7v2w74yi8gug.png)
![P_2(y-5,-(x+3))\to P_3(y-5,x+3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/k128dv0ett2ejpu4dq63m24wip0932418d.png)
Dilated by a factor of 5.
![(x,y)\to (5x,5y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mahub1vrhqo2df08qr71u5y751vdosweke.png)
![P_3(y-5,x+3)\to P'(5(y-5),5(x+3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/4gkkdry3724sbk77qqliwiez1yzhc5uwzg.png)
![P_3(y-5,x+3)\to P'(5y-25,5x+15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bv0wnn5b692r7b7qqdsfssh22iexexjmja.png)
So, the rule of transformation is
![(x,y)\to (5y-25,5x+15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/335yv8wy27gy4mdjplbbkg29xn7b5yxlw6.png)
We have a point A(4,-3). So, put x=4 and y=-3.
![A(x,y)\to A'(5(-3)-25,5(4)+15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ir5lw3zjlk180d9jmpxrd4wg1sujw8duc5.png)
![A(x,y)\to A'(-15-25,20+15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x3xtnz8i8dyrnpndg2picypqpnizstlapw.png)
![A(x,y)\to A'(-40,35)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vbt3tsu0m2oev1h5syd51bimmayjpw3v2u.png)
Therefore, the coordinate of point A' are (-40,35).