Answer:
![x>-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pjxyavwlksgb9we8bh49oku6j2to44rk4q.png)
The solution graph is also attached below. On the solution graph, the value will be:
Explanation:
Given the expression
![-4\left(x\:+\:3\right)\:<\:-2\:-\:2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/udtovngkfc7kju71s4ysx3gi9foofuhidp.png)
Expanding
![-4x-12<-2-2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/d066ns5gn91cig0rla6fd5dh6p2qgdg0zc.png)
Add 12 to both sides
![-4x-12+12<-2-2x+12](https://img.qammunity.org/2021/formulas/mathematics/high-school/2xoq8g3sv3romqoyzga8di2x77whlej9eo.png)
![-4x<-2x+10](https://img.qammunity.org/2021/formulas/mathematics/high-school/zfj2ndv9h6iuf2fh9spwo2lboz9uozixgs.png)
Add 2x to both sides
![-4x+2x<-2x+10+2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/ferx9kbc0amu60dtngusjwm5b7xjj2sxuc.png)
![-2x<10](https://img.qammunity.org/2021/formulas/mathematics/high-school/gnd1eh6sqg21by3li7y7h7pmdxfy17byy6.png)
![\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2qmo9zw7e60bjxspvw4f70c53m8ynfef0z.png)
![\left(-2x\right)\left(-1\right)>10\left(-1\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/q1h1kxgzdgxpd2e7g6iicfjszuwqxs49vk.png)
![2x>-10](https://img.qammunity.org/2021/formulas/mathematics/college/bcmv7a885lo1rxgl1p24f7guu50wew5ve4.png)
Divide both sides by 2
![(2x)/(2)>(-10)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wc8xkau3dacbg4ncwy3yt0km64uobjbk2n.png)
![x>-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pjxyavwlksgb9we8bh49oku6j2to44rk4q.png)
The solution graph is also attached below. On the solution graph, the value will be: